

Outline of talk

- The Structural Eurocodes programme
- The new principles of Eurocode 7
- The bigger picture
- Impact of Eurocode 7

This presentation is available from: www.geocentrix.co.uk/eurocode7

References

National Strategy for Implementation of
the Structural Eurocodes: Design
Guidance, IStructE (April 2004)
Nethercott et al., IStructE

2. PP 1990: 2004. Guide to the Structural Eurocodes for students of structural design

Bright et al. (§7 by Bond and Harris), BSI

EC7 – implications for UK practice (in preparation)

Driscoll, Powell, et al., CIRIA Report RP701

What are the Eurocodes?

- The structural Eurocodes are a European suite of codes for structural design ... developed over ... twenty-five years¹
- By 2010 they will have effectively replaced the current British Standards as the primary basis for designing buildings and civil engineering structures in the UK
- They [will be] used as an acceptable basis for meeting compliance with UK Building Regulations and the requirements of other public authorities

Eurocode 7 is coming is here! The new principles of Eurocode 7

§2.1 Design requirements

- (1)P For each geotechnical design situation it <u>shall</u> be verified that no relevant limit state ... is exceeded
- (4) Limit states <u>should</u> be verified by
 - Use of calculations
 - Adoption of prescriptive measures
 - Experimental models and load tests
 - An observational method

Complexity of design

- §2.1(8)P The complexity of each geotechnical design shall be identified together with associated risks ... a distinction shall be made between:
 - light and simple structures and small earthworks ... with negligible risk*
 - other geotechnical structures
- *May be designed on basis of past experience and qualitative geotechnical investigations

Geotec	hnical	categories

GC	Includes	Design requirements	Design procedure	
1	Small and relatively small structures <u>with</u> <u>negligible risk</u>	Negligible risk of instability or ground movements Ground conditions known	Routine design & construction methods	
		No excavation below water table		
2	Conventional types of structure & foundation with no exceptional risk or difficult soil or loading conditions	Quantitative geotechnical data & analysis to ensure fundamental requirements are satisfied	Routine field & lab testing Routine design & execution	
3	Structures or parts of structures not covered above	Use alternative provisions and rules to those in Eurocode 7		

Actions and effects (from EN 1990)

Action (F)

- Direct action
 - Set of forces (loads) applied to the structure
- Indirect action
 - Set of imposed deformations or imposed accelerations caused for example, by temperature changes, moisture variation, uneven settlement or earthquakes

Effect of action (E)

- On structural members
 - e.g. internal force, moment, stress, strain
- On the whole structure
 - e.g. deflection, rotation

Limit states GEO and STR

Definition of limit state GEO

- Failure or excessive deformation of the ground, in which the strength of soil or rock is cignificant in providing resistance.
 - significant in providing resistance
 - often critical to sizing structural elements in foundations or retaining structures
- Definition of limit state STR
 - Internal failure or excessive deformation of the structure or structural elements ... in which the strength of structural materials is significant in providing resistance
 - includes (for example) footings, piles, and basement walls

§2.4.7.3.4 Design Approaches

- (1)P The manner in which [GEO and STR are applied] shall be determined using one of three Design Approaches
 - Design Approaches are ONLY relevant to limit states STR and GEO
- NOTE 1 Particular Design Approach to be used may be given in the National Annex
 - UK/Denmark prefer DA1
 - Germany/France prefer DA2
 - Some countries will allow a choice

Geotechnical Design Report

- §2.8(1)P The assumptions, data, methods of calculation and results of the verification of safety and serviceability must be recorded in a Geotechnical Design Report
 - Level of detail depends on type of design
 - Single sheet may be sufficient

Work of CEN TC288

- Execution of special geotechnical work(s)
 - Bored piles (BS EN 1536: 2000)
 - Diaphragm walls (BS EN 1538: 2000)
 - Displacement piles (BS EN 12699: 2001)
 - Ground anchors (BS EN 1537: 2000)
 Grouting (BS EN 12715: 2000)
 - Jet grouting (BS EN 12715: 2000)
 Jet grouting (BS EN 12716: 2001)
 - Sheet pile walls (BS EN 12063: 1999)
- Standards currently in preparation
 - Micropiles (prEN 14199: 2001)
 - Soil nailing (prEN 14490: 2002)
 - Reinforced fill (prEN 14475: 2002)
 - Deep mixing (prEN 14679: 2003)
 - Ground treatment by deep vibration (prEN 14731: 2003)
 - Deep drainage (prEN xxxxx)

Impact on British Standards³

Existing British Standard	EN 1997-1	prEN 1997-2	Execution standard
BS 1377: 1990, Methods of test for soils for civil engineering purposes		1	V m
BS 5930: 1999, Site investigations	§3	§1-6	
BS 6031: 1981, Earthworks	§5, 11-12		
BS 8002: 1994, Earth retaining structures	§3		EN 1538, 12063
BS 8004: 1986, Foundations	§6-7		EN 1536, 12063, 12699, prEN 14199
BS 8006: 1995, Strengthened/reinforced soils and other fills			prEN 14475
BS 8008: 1996 Construction and descent of machine-bored shafts for piling	§7		EN 1536, 12063
BS 8081: 1989, Ground anchorages	§8		EN 1537

Reaction to the Eurocodes

- David Puller, chief engineer at Bachy Soletanche, Ground Engineering Talking Point (October 2004)
 - ...the scourge of the UK construction industry will soon be upon us with ... the Eurocodes and specifically EC7
 - ...factors of safety [to] derive safe pile load capacity are ... inversely proportional to the number of soil profiles available
 - As a result there will be a direct design benefit from carrying out a comprehensive site investigation. Put crudely, more boreholes will mean lower factors of safety

The challenge ahead¹

- [The] construction industry ... has not previously faced the challenge of implementing a complete suite of new codes encompassing all the major materials and loading requirements
- This burden will not be eased by the format and terminology of the Eurocodes both of which are different from British Standards

Impact of Eurocode 7¹

- ...within the UK, the extent to which geotechnical design has been codified [is] much less than in other sectors
- ... the introduction of EN 1997 (Geotechnical design) will represent a marked change in UK practice
- ... the needs of geotechnical designers
 ... to adapt ... will be significant

